

Solutions on the table

- 1. Interconnectors and trading
- 2. Flexible electricity demands and smart grids
- 3. Integrated efficient Smart Energy Systems

Smart Energy Systems

Download report:

www.EnergyPLAN.eu/IDA

Key principles

FLEXIBLE TECHNOLOGIES INTEGRATED ENERGY SYSTEMS

Storage Comparison

Figure 12: Electricity production for the 2015 reference, the 2035 and the 2050 DEA and IDA scenarios

Wind power should be prioritised, supplemented by PV and power plants

RES LCoE are dropping

Download reports: www.energyplan.eu/PV

We have to use much more electricity in the future (flexibly)!

Demands more than doubles

Figure 31: Electricity demands in the 2015, 2035 and 2050 scenarios

Smart energy systems

- The key to cost-effective renewable energy systems
 - Heat storage, district heating, CHP and large heat pumps
 - New electricity needs from large / small heat pumps and electric cars (with electricity storage)
 - Electrolysis and liquid fuels for transport sector with storages
 - Integration of gas system and gas storage

Power-to-Heat Power-to-Transport

Power-to-Gas Power-to-liquids

The top 10 technologies that require additional investment in the 100% renewable energy system in 2050

- From Electricity markets to Smart Energy System Markets?

	Technology	Required additional investment from today to 2050 (Billion €)
1	Energy renovations of the existing building stock	29.9
2	Offshore wind	28.4
3	Individual heat pumps	14.7
4	District heating grid expansion	5.5
5	Electrofuel production (PtX)	4.4
6	Photovoltaic	2.6
7	Individual solar thermal	2.6
8	Biogas plants	2.6
9	Charging stations	2.2
10	Large-scale heat pumps	2.0

What are electrofuels?

ELECTROFUELS

- High share of electricity in production process
- New way of producing hydrocarbons/ammonia
- Merging hydrogen with carbon or nitrogen
- Redirecting electricity to transport sector
- Open a door to fuel storage
- Flexible end-fuel choice

Journal of Cleaner Production
Volume 112, Part 5, 20 January 2016, Pages 3709-3720

ъ .

Terminology used for renewable liquid and gaseous fuels based on the conversion of electricity: a review

Iva Ridjan A ☒, Brian Vad Mathiesen ☒, David Connolly ☒ ☒

Biomass potential

BIOMASS POTENTIAL

OPTIMISTIC: CA. 300

PJ

PESIMISTIC: 165 PJ REALISTIC: 200 PJ

40 GJ BIO PR. CAPITA HIGH GLOBALLY

Biomass consumption

AALBORG UNIVERSITY
DENMARK

- The individual technologies more advanced than generally presumed
- The concept as an integrated production system remains to be proven on a larger scale.

What is the role of electrolysis in the future?

	kW to few MW scale	MW scale	GW scale
Niche markets	Specialized gas markets (H₂, CO)	Unlikely to emerge on larger scales	
Energy storage	Demonstration of Power-to- methane for grid injection and transport	Demonstration and commercialization of Power-to-Liquid for transport	Cross-sectorial integration and seasonal storage
Hydrogen	Hydrogen refuelling stations Hydrogen for ancillary service		No further expansion of hydrogen refuelling station is expected
	2017-2020	2020-2030	Beyond 2030

Growth of PtX installations?

Electrolysis installations are growing:

2018: 1 MW (typical big demo project)

2020: 10 MW (Shell refinery in Germany)

2022-2023: 100 MW

SAME DEVELOPMENT FOR ELECTROLYSIS? Annual PV additions: historic data vs IEA WEO predictions In GW of added capacity per year - sources World Energy Outlook and PVMA

Costs?

Ridjan (2015), Integrated electrofuels and renewable energy systems

Brynolf et al (2018) Electrofuels for the transport sector: A review of production costs

CO₂ capture costs (short term)

Biogas purification

^{*}Assumed free manure for biogas production

FINAL CONSUMER NG PRICE EU28 (2017):

^{*}Assumed free manure for biogas production, and 96% technical availability of the methanation plant. Electricity cost for hydrogen production via alkaline electrolysis 63.6% efficiency included with price for onshore wind.

Locations for P2Methane

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Investment screening model for spatial deployment of power-to-gas plants on a national scale — A Danish case

Steffen Nielsen ^{a,*}, Iva Ridjan Skov ^b

- ^a Aalborg University, Rendsburggade 14, Aalborg, Denmark
- b Aalborg University, A.C. Meyers Vænge 15, Copenhagen, Denmark

Both biogas methanation and CO₂ methanation

The role of future gas grids

- Existing natural gas networks can handle max 20% of H₂ in the pipeline
 - What the carbon steel natural gas pipes can handle due to the material properties.
- Very few modification necessary if the hydrogen concentration is below 15%

The role of future gas grids

Danish grid tests

 In case the grid is connected to either filling stations, gas turbines or any gas engines, the percentage of hydrogen that can be tolerated drops to 2%.

Previous conclusion:

- maximum of 2% can be injected into natural gas grids if connected to CNG filling stations;
- maximum of 5% if the grid is not connected to CNG filling stations, gas turbines and most gas engines;
- maximum of 10% if the grid is not connected to filling stations, gas turbines and or gas engines.

- Improved flexibility of the system
- Cross-sector integration
- Flexibility of fuel choice
- Conversion of electricity into form of liquid or gaseous fuels
- ▶ Reduction of CO₂ emissions in case of CO₂ recycling pathways
- Reduction of biomass usage for fuel production in case of biomass hydrogenation
- No big infrastructure adaptations

